Search results

Search for "Roseobacter clade" in Full Text gives 4 result(s) in Beilstein Journal of Organic Chemistry.

Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents

  • Anuj Kumar Chhalodia and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 569–580, doi:10.3762/bjoc.17.51

Graphical Abstract
  • -(allylmethylsulfonio)propanoate (AllMSP), were synthesized and fed to marine bacteria from the Roseobacter clade. These bacteria are able to degrade DMSP into dimethyl sulfide and methanethiol. The DMSP analogues were also degraded, resulting in the release of allylated sulfur volatiles known from garlic. For unknown
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2021

Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid

  • Patrick Rabe,
  • Tim A. Klapschinski,
  • Nelson L. Brock,
  • Christian A. Citron,
  • Paul D’Alvise,
  • Lone Gram and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2014, 10, 1796–1801, doi:10.3762/bjoc.10.188

Graphical Abstract
  • of Denmark, Matematiktorvet bldg. 301, 2800 Kongens Lyngby, Denmark 10.3762/bjoc.10.188 Abstract Tropodithietic acid (TDA) is a structurally unique sulfur-containing antibiotic from the Roseobacter clade bacterium Phaeobacter inhibens DSM 17395 and a few other related species. We have synthesised
  • . inhibens or other TDA-producing bacteria from the Roseobacter clade as promising candidates to be used as probiotics in aquacultures [12]. The mode of action of TDA is unknown, but it is difficult to select resistant and tolerant strains from long-term exposures to sub inhibitory concentrations of TDA
PDF
Album
Supp Info
Letter
Published 06 Aug 2014

Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

  • Nelson L. Brock,
  • Christian A. Citron,
  • Claudia Zell,
  • Martine Berger,
  • Irene Wagner-Döbler,
  • Jörn Petersen,
  • Thorsten Brinkhoff,
  • Meinhard Simon and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2013, 9, 942–950, doi:10.3762/bjoc.9.108

Graphical Abstract
  • , Germany 10.3762/bjoc.9.108 Abstract Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP) via competing pathways releasing either methanethiol (MeSH) or dimethyl sulfide (DMS). Deuterium-labeled [2H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP
  • ) were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC–MS. Feeding experiments with [2H6]DMSP resulted in the
  • methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction. Keywords: dimethylsulfoniopropionate; Roseobacter clade; selenium metabolism; sulfur metabolism; volatiles; Introduction The Roseobacter
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2013

Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi

  • Ramona Riclea,
  • Julia Gleitzmann,
  • Hilke Bruns,
  • Corina Junker,
  • Barbara Schulz and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2012, 8, 941–950, doi:10.3762/bjoc.8.106

Graphical Abstract
  • Braunschweig, Germany 10.3762/bjoc.8.106 Abstract Volatiles released by the marine Roseobacter clade bacterium Rugeria pomeroyi were collected by use of a closed-loop stripping headspace apparatus (CLSA) and analysed by GC–MS. Several lactones were found for which structural proposals were derived from their
  • ; Introduction Bacteria of the Roseobacter clade form one of the most abundant lineages of marine bacteria that occur globally in marine ecosystems from polar to tropical regions [1][2]. They are present in costal and open ocean environments, in surface waters and in the water column; are found as algal
  • satellites from space [8], sometimes covering large areas of >105 km2 and containing more than 106 cells mL−1. During these blooms bacteria from the Roseobacter clade have been observed as the predominant prokaryotic species accounting for more than half of the total bacterial community [3][4]. DMSP is also
PDF
Album
Full Research Paper
Published 25 Jun 2012
Other Beilstein-Institut Open Science Activities